

Multi-Constellation RTK GNSS Cadastral Test

Bruce Robinson 25/07/2018

Introduction

Goal: To speed up the process of the Cadastral GNSS survey.

Current Practice: To Visit the mark TWICE with an minimum of 1hour between fix's. The second visit is to obtain an independent fix by having different SVs in a different constellation.

Test Process: Visit the mark ONCE. Use the 4 constellations in 2 pairs to obtain 2 fixes (1 fix per pair). Test reliability of the results and their independence.

Advantage of Test Process: Shows savings of approximately 50% of the field capture time as only one visit per mark required. No loss of accuracy and independence maintained

Equipment

Leica Gs16 antenna SN:3702897 with Leica Cs20 Controller running fw 3.20 Date of Survey – 25/07/2018 Surveyed by Bruce Robinson

CONSTRUCTION **TECHNOLOGY**

Quality Control and RTK Corrections

The Quality Control setting were set on the controller to automatically store results after 5 epochs, if the quality was better than 0.02 horizontally, as per the images below.

Internet based corrections used. Mountpoint was the Base station GSAL using single site RTCM corrections.

General Advanced	 Seal-Time Stop I Stop I						
Automatically stop point measurement Stop measurement based on Accuracy V	Position quality better than Height quality better the contract of the contrac						
Automatically store point Check quality before OK Parameter Page	than For a min number of positions Positions OK						

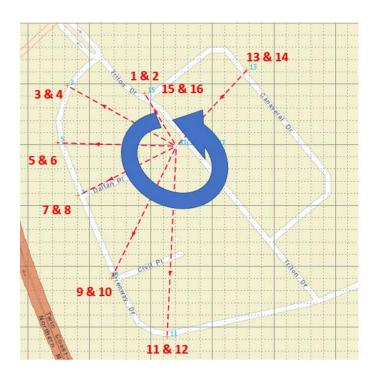
Observation Procedure

Each Point was occupied first using GPS & BeiDou the pole was then rotated approx. 180 degrees. The point was then reoccupied with a different point number using Glonass & Galileo.

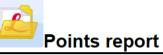
After placing the pole on the Survey mark the measurements were NOT triggered until after a second SmartCheck indication was shown on the controller screen.

The Pole was only manually held vertical over the point (No bracing), using the pole bubble as the level indicator

After each pair of observations on a point a COGO inverse was performed to check that the points were close to each other.


The starting pair of occupations (1 & 2) were repeated at the end (with new point numbers 15 & 16)

Plan of Surveyed Points


Points surveyed in numerical order ODD numbers are GPS & BeiDou EVEN numbers Glonass & Galileo

Raw Observation Results

Point ID 🗤	Date/Time 🗤	Easting **	Northing **	0.hgt 🕶	E.hgt +•	Class ++	SubClass **
RTCM-Ref 0047	2018-07-25 10:28:48.78	396341.287	815395.006	53.722	88.258	REF	positionAndHeight
1	2018-07-25 10:29:30.42	396289.795	815484.040	39.322	73.860	MEAS	GPS phase
2	2018-07-25 10:30:28.56	396289.792	815484.044	39.310	73.848	MEAS	GPS phase
3	2018-07-25 10:36:52.32	396163.936	815496.954	38.694	73.231	MEAS	GPS phase
4	2018-07-25 10:37:41.61	396163.921	815496.939	38.665	73.201	MEAS	GPS phase
5	2018-07-25 10:39:54.45	396148.117	815401.920	44.014	78.547	MEAS	GPS phase
6	2018-07-25 10:40:36.54	396148.105	815401.914	43.991	78.524	MEAS	GPS phase
7	2018-07-25 10:42:32.65	396180.925	815314.009	49.424	83.955	MEAS	GPS phase
8	2018-07-25 10:43:18.45	396180.914	815313.998	49.405	83.936	MEAS	GPS phase
9	2018-07-25 10:45:51.46	396235.960	815177.455	56.239	90.766	MEAS	GPS phase
10	2018-07-25 10:46:35.44	396235.949	815177.450	56.230	90.758	MEAS	GPS phase
11	2018-07-25 10:49:39.50	396326.292	815080.866	54.302	88.827	MEAS	GPS phase
12	2018-07-25 10:50:50.42	396326.284	815080.857	54.295	88.820	MEAS	GPS phase
13	2018-07-25 11:01:44.52	396455.297	815520.513	46.566	81.108	MEAS	GPS phase
14	2018-07-25 11:02:36.48	396455.305	815520.515	46.541	81.083	MEAS	GPS phase
15	2018-07-25 11:05:52.72	396289.804	815484.041	39.323	73.861	MEAS	GPS phase
16	2018-07-25 11:06:41.46	396289.794	815484.049	39.323	73.861	MEAS	GPS phase

Time at Each Mark

On average the time between the auto storing of the first occupation, rotating the pole, dropping the current satellite pair, reacquiring the second pair ,initializing, SmartCheck (check initialization), manually triggering the occupation, obtaining 5 epochs and auto storing the 2nd set of data was LESS than 1 minute

Conclusion 1

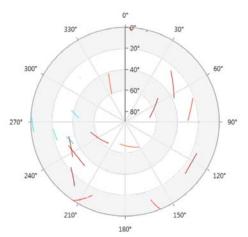
The time taken to drop the 1st pair and reacquire the 2nd pair of satellites is not significant in terms of the survey time and far more efficient than having to do a repeat visit at a later time

Vector Pair Comparison, from raw Observations

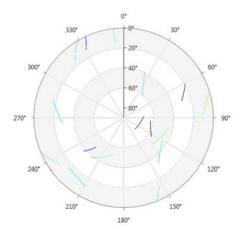
NOTE : Azim	uth does	NOT apply the rotation	(if any) from	a 2step calcul	ation					
		plied with no warranty				esults				
Survey :1		,		,,						
	ector Dist	ance reported upon : 1.	000m							
		ance reported upon : 3								
Rounding Be	35000	5000	1000	200	100	50	10			
Rounding in	0.01	0.1	1	5	10	30	60			
From Name	From Coc	Observation Date/Time	To Name	To Code	Observation Date/Tim	Class	Diff. in Observa Az DD.MMSS		Ellips. Distance	
1		25/07/2018 10:29	measured	3		25/07/2018 10:36	measured	0.1227 hrs	275.513	126.533
2		25/07/2018 10:30	measured	4		25/07/2018 10:37	measured	0.1203 hrs	275.5055	126.543
									35"	-0.01
3		25/07/2018 10:36	measured	5		25/07/2018 10:39	measured	0.0506 hrs	189.27	96.351
4		25/07/2018 10:37	measured	6		25/07/2018 10:40	measured	0.0486 hrs	189.27	96.342
									0"	0.009
5		25/07/2018 10:39	measured	7		25/07/2018 10:42	measured	0.0439 hrs	159.321	93.842
6		25/07/2018 10:40	measured	8		25/07/2018 10:43	measured	0.0450 hrs	159.321	93.847
									0"	-0.005
7		25/07/2018 10:42	measured	9		25/07/2018 10:45		0.0552 hrs	158.0255	147.242
8		25/07/2018 10:43	measured	10		25/07/2018 10:46	measured	0.0547 hrs	158.0255	
									0"	0.005
9		25/07/2018 10:45		11		25/07/2018 10:49		0.0633 hrs	136.55	
10		25/07/2018 10:46	measured	12		25/07/2018 10:50	measured	0.0708 hrs	136.5505	
									5"	-0.006
11		25/07/2018 10:49		13		25/07/2018 11:01		0.2014 hrs	16.2112	
12		25/07/2018 10:50	measured	14		25/07/2018 11:02	measured	0.1961 hrs	16.2117	
									5"	
13		25/07/2018 11:01		15		25/07/2018 11:05		0.0689 hrs	257.3415	
14		25/07/2018 11:02	measured	16		25/07/2018 11:06	measured	0.0680 hrs	257.343	
									15"	-0.015

Conclusion 2

The vector pairs are in very good agreement and therefore no degradation in the quality of the survey within terms of the GNSS error



0800 453 422 | WWW.GLOBALSURVEY.CO.NZ




Sat Availability

GPS & BeiDou

Glonass & Galileo

GPS GLONASS Beidou Galileo QZSS

> **Leica** Geosystems

Constellation Independence

Poir	nt ID 🗤	REF	- AV	# Pos. **	Ant Ht	. AT G A	• R ••	C +*	E 41	CQ F	OS ++	CQ Ht ++	Mount	pt 🗤
RTCM-F	Ref 0047				0.000)					-			
1		RTCM-R	CM-Ref 0047 5		2.000) 10	0	5		0.0	006	0.008	GSALsing	JIEADV4
2		RTCM-Ref 0047		5	2.000) 0	8	0 5		0.0	006	0.014	GSALsingleADV4	
3		RTCM-R	-Ref 0047 5		2.000) 10	0	6	0	0 0.016		0.018	GSALsing	IeADV4
4			-Ref 0047 5		2.000	-	9	0	5			0.015	GSALsingleADV4	
5		RTCM-R	Ref 0047	5		2.000 9					.007 0.010		GSALsingleADV4	
6		RTCM-F		5	2.000		5	0 5		0.006		0.015	GSALsingleADV4	
7		RTCM-F		5	2.000		0	4	0		009	0.012	GSALsing	-
8		RTCM-F		5	2.000		6	0	0 4		0.007		GSALsingleADV4	
9		RTCM-R		5	2.000		0	5	0		006	0.008	GSALsing	-
10		RTCM-R		5	2.000	-	6	0	5		006	0.013	GSALsing	-
11		RTCM-R		5	2.000		0	6	0		007	0.010	GSALsing	
12		RTCM-R		5	2.000	-	5	0	5		006	0.014	GSALsing	
13		RTCM-R		5	2.000		0	6	0		007	0.010	GSALsingleADV4	
14		RTCM-R		5	2.000		7	0 5			007	0.012	GSALsingleADV4	
15		RTCM-R		5	2.000		0	6 (006	0.008	GSALsingleADV4	
16		RTCM-R	(et 0047	5	2.000) 0	6	0	5	0.0	007	0.011	GSALsing	IEADV4
Elevatio	n													
80-90														
70-80			1	1	1									
60-70		1	1	1		1	1	1						
50-60		1	1	1	1		1	1		1			1	
40-60	1	1		1	2		1	2			1		2	
30-40		1	1					2+2	2	3	1			
20-30		1	1+1		1			1		1+1	1	1		
10-20			1	1	1	1+1	1	2+1	L		1	1	1	
	0-30	30-60	60-90	90-120	120-150	150-180	180-210	210-2	40	240-270	270-300	300-330	330-360	Azimuth
			SV per see	er sector during Total observation			riod							
			GPS & BeiDou											
			Glonass & Galileo											
					& Glonass	& Galileo								
		Both GPS & BeiDou, &, Glonass & Galileo												

See Diagram above The sky was broken up into 96 blocks, 8 vertical blocks (10°) and 12 horizontal blocks (30°). If a satellite was in any block at ANY stage during the survey the block was counted. Count comes from predicated not observed. From the blocks above visually it can be seen that there was very little commonality (yellow) in the constellation pairs (approx. only 11% by blocks).

Conclusion 3

The pairs provided different satellite constellations and different geometry giving the same effect as having to do repeat visits.

The 2nd (Glonass Galileo) fix enabled the Real time verification of the 1st pair (GPS BeiDou) fix by the use of COGO

